
BAYESIAN OPTIMIZATION IN JULIA
Google Summer of Code 2023

Name of the project: Implementing Scalable Bayesian Optimization in Julia
Organization: The Julia Language
Supervisor: Johanni Brea

[1] Peter I. Frazier. A Tutorial on Bayesian Optimization. 2018
[2] David Eriksson, Michael Pearce, Jacob Gardner, Ryan D.
Turner, Matthias Poloczek. Scalable Global Optimization via
Local Bayesian Optimization. 2019
[3] Roman Garnett, Bayesian Optimization. 2023. Cambridge
University Press

LITERATURE

refactors the original BayesianOptimization.jl to fit
the abstract framework above
implements initialize! to perform initial sampling 
implements BasicGP <:
AbstractDecisionSupportModel 

maintains a global Gaussian process surrogate
implements various policies that are of the
following form:

evaluate the objective at a maximizer of an
acquistion function, that is defined on the
domain of the objective function using
aggregated information in BasicGP
acquisition functions quantify how useful an
evaluation at a point in the domain could be

search for the optimal compromise
between exploration and exploitation, i.e.,
sampling where we are uncertain about
the objective and sampling where we
expect high objective values, respectively

currently implemented acquisition functions:
expected improvement
max mean
mutual information
probability of improvement
Thompson sampling
upper confidence bound 

evaluate objective in batches
implements a method initialize! for initializing
local models, i.e, performing initial sampling
implements Turbo <:
AbstractDecisionSupportModel

maintains local Gausian process surrogates
and corresponding trust regions
strategy for adjusting trust regions:

if we could improve current optimizer via
the current batch, enlarge trust region, else
shrink trust region
if a trust region has converged, initalize a
new one 
set center to current optimizer / max.
posterior mean in case of noice
run hyperparameter optimization, use
lengthscales parameter for side ratio of the
box trust region 

implements TurboPolicy <: AbstractPolicy 
strategy for advancing local models in parallel:

use Thomson sampling across all trust
regions simultaneously

automatically evaluate the objective
function more frequently in trust
regions that perform better  

implements a prototypical BO-like algorithm
using abstract data types
is motivated by a mathematical framework
introduced in chapter 1 of the book [3] 
implements an OptimizationHelper that provides
basic utilities for defining unconstrained
problems and logging progress 
currently supports gradient free optimization only
up to some datails, it implements the following
while loop inside exported function optimize!
(dsm, policy, oh; verbose=true)

while run_optimization(dsm, oh)
    xs = next_batch!(policy, dsm, oh)
    ys = evaluate_objective!(oh, xs) 
    update!(dsm, oh, xs, ys)
end

dsm isa AbstractDecisionSupportModel
aggregates evaluations into some kind of model 

policy isa AbstractPolicy
uses a decision support model to decide where to
evaluate the objective function next

oh isa OptimizationHelper
logs best observed optimizer, history, overall time
normalizes input, i.e., transforms the problem into
a maximization problem on a unit cube
unified interface for getting results, history etc..

AbstractBayesianOptimization.jl

PROJECT TASKS
Implement Trust Region Bayesian
Optimization (TuRBO) algorithm and
integrate it into an existing package
BayesianOptimization.jl, currently
implementing traditional Bayesian
optimization algorithms in Julia.

RESULTS

serve as a framework for implementing BO-
like algorithms

making it easier to research, test and
develop novel BO-like algorithms in
Julia

provide implementations of some sucessful
BO-like algorithms

traditional methods that work well in
low dimensions
recent developments aiming to work
well in higher dimensions (TuRBO)

BayesianOptimization.jl was refactored into
multiple packages such that they 

The project is currently still in an experimental,
partly documented stage but it is already
working on examples. All related packages to
this project are available in
JuliaBayesianOptimization organization on
github. 

BayesianOptimization.jl TrustRegionBayesianOptimization.jl

a family of methods for sample efficient search for
global optimizers
useful for optimizing objective functions that exhibit
one or more of the following properties:

are expensive to evaluate
are restricted by a limited evaluation budget
evaluations can be corrupted by noise
are non-convex
are black box functions, i.e., lack a closed-form
expression
there is no efficient mechanism for estimating the
gradient

traditional methods work well for continuous domains
of less than 20 dimensions, as mentioned in [1]
 “killer app”: hyperparameter tuning 
commonly used with a Gaussian process surrogate, for
details of the algorithms, please see below 

Bayesian optimization (BO) algorithms
belongs to recent advances in Bayesian optimization
that aim to work well in higher dimensions
was first introduced in [2]
maintains local Gaussian process surrogates in parallel
that are accurate inside respective trust regions that
adapt in size and postion based on performance

improved approximating capability of
heterogeneous objective functions (different
hyperparameters for each trust region)
effectively deal with large posterior uncertainty in
higher dimensional problems and related over
exploration behavior occuring in traditional
methods
enjoy local Bayesian optimization properties: 

robust to noice, sample efficient
for details of the algorithm, please see below 

Trust Region Bayesian Optimization (TuRBO) algorithm

TuRBO as well as traditional BO methods
depend crucially on  Gaussian proceses
(GPs) with hyperparameter optimization
there is a package AbstractGPs.jl that
provides tools for working with GPs but
there are some utilities that need to be
added

idea: isolate them into a package and
integrate the package into an existing
system of surrogates

refactor existing
SurrogatesAbstractGPs module in
Surrogates.jl  package (SciML org)
into own package and extend it 

Surrogates.jl formalizes what a
deterministic surrogate is  via the
AbstractSurrogate interface

idea: extend the interface to include
stochastic surrogates, in particular
SurrogatesAbstractGPs.jl should use the
same, unified surrogate API

 move and rework AbstractSurrogate
interface into SurrogatesBase.jl,
where only surrogate-related generic
function definitions are provided

this is currently work-in-progress

Moving the Gaussian process surrogate
where it belongs

Samuel Belko
enrolled in a master's program
in mathematics at Technical
University of Munich

 AUTHOR
github: samuelbelko
https://belko.xyz
samuelbelko@protonmail.com

CONTACT

initialize!(dsm, oh)
next_batch!(policy, dsm, oh)
update!(dsm, oh, xs, ys)

Notable functions from the interface:

 


